3.680 \(\int \frac{(a+b \cos (c+d x)) (A+C \cos ^2(c+d x))}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=132 \[ -\frac{2 a (3 A+5 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a (3 A+5 C) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 a A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 b (A+3 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 A b \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(-2*a*(3*A + 5*C)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*b*(A + 3*C)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a*A*
Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (2*A*b*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (2*a*(3*A + 5*C)*Sin[
c + d*x])/(5*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.195111, antiderivative size = 132, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {3032, 3021, 2748, 2636, 2639, 2641} \[ -\frac{2 a (3 A+5 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a (3 A+5 C) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 a A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 b (A+3 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 A b \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(7/2),x]

[Out]

(-2*a*(3*A + 5*C)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*b*(A + 3*C)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a*A*
Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (2*A*b*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (2*a*(3*A + 5*C)*Sin[
c + d*x])/(5*d*Sqrt[Cos[c + d*x]])

Rule 3032

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (C_.)*sin[(e
_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((b*c - a*d)*(A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1
))/(b^2*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(b^2*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b
*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f
*x] + b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac{7}{2}}(c+d x)} \, dx &=\frac{2 a A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2}{5} \int \frac{\frac{5 A b}{2}+\frac{1}{2} a (3 A+5 C) \cos (c+d x)+\frac{5}{2} b C \cos ^2(c+d x)}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 a A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 A b \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4}{15} \int \frac{\frac{3}{4} a (3 A+5 C)+\frac{5}{4} b (A+3 C) \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 A b \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{1}{3} (b (A+3 C)) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx+\frac{1}{5} (a (3 A+5 C)) \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 b (A+3 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 A b \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 a (3 A+5 C) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}-\frac{1}{5} (a (3 A+5 C)) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{2 a (3 A+5 C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 b (A+3 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a A \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 A b \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 a (3 A+5 C) \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.733206, size = 122, normalized size = 0.92 \[ \frac{-6 a (3 A+5 C) \cos ^{\frac{3}{2}}(c+d x) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+9 a A \sin (2 (c+d x))+6 a A \tan (c+d x)+15 a C \sin (2 (c+d x))+10 b (A+3 C) \cos ^{\frac{3}{2}}(c+d x) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+10 A b \sin (c+d x)}{15 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(7/2),x]

[Out]

(-6*a*(3*A + 5*C)*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 10*b*(A + 3*C)*Cos[c + d*x]^(3/2)*EllipticF[(
c + d*x)/2, 2] + 10*A*b*Sin[c + d*x] + 9*a*A*Sin[2*(c + d*x)] + 15*a*C*Sin[2*(c + d*x)] + 6*a*A*Tan[c + d*x])/
(15*d*Cos[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B]  time = 1.153, size = 732, normalized size = 5.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-
2/5*a*A/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(12*Ell
ipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1
/2*c)^4-24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+3*
EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)-8*sin(1/2*
d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*A*b*(-1/6*cos(1/2*d*x+
1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^2+1/3*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(
cos(1/2*d*x+1/2*c),2^(1/2)))+2*a*C*(-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*(-2*sin(1/2*d*x+1/2*c)^4+sin
(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2
-1))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )}{\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C b \cos \left (d x + c\right )^{3} + C a \cos \left (d x + c\right )^{2} + A b \cos \left (d x + c\right ) + A a}{\cos \left (d x + c\right )^{\frac{7}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((C*b*cos(d*x + c)^3 + C*a*cos(d*x + c)^2 + A*b*cos(d*x + c) + A*a)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )}{\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)/cos(d*x + c)^(7/2), x)